iMadrassa
التمرين 04
أ

نعتبر الدالة 

المعرفة على 
كما يأتي :

السوال 1

ادرس تغيرات الدالة 

.

 و 
و منه 
.

لدينا من اجل كل 

من 
:

إشارة 

هي إذن من نفس إشارة 
. و منه جدول تغيرات الدالة 
:

السؤال 2

بين أن المعادلة 

تقبل حلا وحيدا 
في المجال 
.

الدالة 

مستمرة و متزايدة على 
و منه على المجال 
و بما أن 
فإنه حسب مبرهنة القيم المتوسطة المعادلة 
تقبل حلا وحيدا 
في المجال .

السؤال 3

استنتج إشارة 

.

 

إشارة :

ب

نعتبر الدالة 

المعرفة على 
كمى يأتي : 
و ليكن 
تمثيلها البياني في معلم متعامد و متجانس 
(وحدة الطول 2cm) .

 

السؤال 1

بين أنه من أجل كل

  من 
:

لدينا من أجل كل 

من 

و هكذا من أجل كل  

من 
:

السؤال 2

ادرس تفيرات الدالة 

.

 

إشارة 

هي إذن نفس إشارة 
.

لدينا من جهة ثانية :

و

جدول تغيرات :

السؤال 3

بين أن المستقيم 

ذا المعادلة 
مستقيم مقارب مائل للمنحني 
عند
.

 

 

لدينا 

و منه 
المستقيم ذو المعادلة 
مستقيم مقارب مائل للمنحنى
  عند 
.

السؤال 4

ادرس وضعية المنحنى 

بالنسبة للمستقيم المقارب المائل .

 

لدراسة وضعية المنحنى 

بالنسبة لمستقيمه المقارب 
ندرس إشارة 
.

لدينا : 

و منه فإشارة 
هي عكس إشارة 
.

السؤال 5

بين أن المنحنى 

يقبل نقطة إنعطاف .

نقطة الإنعطاف : لدينا من أجل كل 

من 
  , و منه :

بما أن 

  تنعدم مغيرة إشارتها عند 
فإن النقطة 
  نقطة إنعطاف للمنحنى 
  .

السؤال 6

بين أن :

 

لدينا  

و منه

السؤال 7

ارسم المستقيم 

المقارب و المنحنى 
نأخذ

الرسم :

ج


 مستقيم معادلته 
حيث 
عدد حقيقي .

السؤال 1

عين 

حتى يكون 
مماسا للمنحنى
  في نقطة يطلب تعيين إحداثياتها .

المستقيم 

مماسا للمنحني 
في نقطة منه فاصلتها 
يعني 
.

يعني 
أي
  و بالتالي 
.

لدينا 

و منه معادلة المماس هي : 
بالمطابقة نجد 
.

السؤال 2

ناقش حسب قيم الوسيط الحقيقي 

عدد حلول المعادلة التالية :

المناقشة البيانية :

 يعني 
و بإضافة 
إلى الطرفين نحصل على :

أي 

.

و منه حلول المعادلة هي فواصل نقاط تقاطع المنحنى 

مع المستقيم 
.

لدينا هكذا :

إذا كان : 

المعادلة لا تقبل حلولا .

إذا كان :

للمعادلة حل مضاعف .

إذا كان : 

للمعادلة حلان .

إذا  كان: 

ليس للمعادلة حلول .


قم بالدخول للإطلاع على المزيد من المحتوى

لتتمكن من الوصول إلى جميع الدروس والتمارين والمسابقات والفيديوهات وتصفح الموقع براحة قم بالدخول أو بتسجيل حساب مجانا.



قم بالدخول للإطلاع على المزيد من المحتوى

لتتمكن من الوصول إلى جميع الدروس والتمارين والمسابقات والفيديوهات وتصفح الموقع براحة قم بالدخول أو بتسجيل حساب مجانا.



قم بالدخول للإطلاع على المزيد من المحتوى

لتتمكن من الوصول إلى جميع الدروس والتمارين والمسابقات والفيديوهات وتصفح الموقع براحة قم بالدخول أو بتسجيل حساب مجانا.